ISSN 2146-8389
 

Invited Review Open Access


New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries

Pierre A. Denis.

Abstract
Oxidative stress and, to a lesser degree, nitrosative stress are common to every disease. Nowadays, oxidative stress is detected by an abnormal amount of reactive oxygen species (ROS), mainly superoxide (O2•-). Reactive nitrogen species (RNS) from nitrosative stress derive all from the action of nitric oxide (NO•) and peroxynitrite (ONOO ). Even though the chemical reactions and the action of their products have been described for decades, the overall process lacks consistency and clarity, and our understanding of diseases inevitably suffers as a result.
In biology, and more generally when we consider a millimetric or infinitesimal volume, gas distribution is always anisotropic. Usual modeling of oxygen diffusion using Fick’s law does not reflect reality, as it does not take nanobubble formation into account due to this anisotropy. If we note nO2 as the number of oxygen molecules found in an infinitesimal volume, with n being a natural integer, nO2 can be seen as n dioxygen molecules that have been separated, but it can also be interpreted as a bubble comprising n molecules. Therefore, it becomes possible to rethink the action of a number of enzymes, which are involved on species designated 2O2 by biochemists and biologists.
NADPH oxidase seems able to fix a 2O2 nanobubble. Due to their multimeric organization, NO synthase (NOS) and superoxide dismutase (SOD) capture quantum bubbles, which would otherwise have resulted in foam. NO synthase has been identified for the first time as an ultrasensitive detector for PO2. Antibubble biomachinery means any enzymatic system, which prevents phase grouping by its action. Previous enzymes are identified as archetypes of antibubble biomachineries. We propose to unify ROS and RNS under the wording ‘Foam Breakdown Products’ (FBP). This attempt to unify the nitro-oxidative stress might prove to be fruitful to explain the pathophysiology of many diseases.

Key words: NADPH oxidase, nitric oxide synthase, reactive nitrogen species, reactive oxygen species, superoxide dismutase


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Pierre A. Denis
on Google
on Google Scholar
Article Statistics
 Viewed: 768
Downloaded: 300
Cited: 0

REFERENCES
1. Popper K. Conjectures and refutations. Routledge, London, 1963.
2. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87:1620-4. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
3. McBride AG, Brown GC. 198 Production of peroxynitrite from nitric oxide, hydrogen peroxide and superoxide dismutase: pathological implications. Biochem Soc Trans 1997; 25:409S.
4. Oter S, Jin S, Cucullo L, Dorman HD. Oxidants and antioxidants: friends or foes? Oxid Antioxid Med Sci 2012; 1:1-4.
5. Wispe JR, Warner BB, Clark JC, Dey CR, Neuman J, Glasser SW, Crapo JD, Chang LY, Whitsett JA. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem 1992; 267:23937-41.
6. Mohazzab KM, Wolin MS. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol 1994; 267:L815-22.
7. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266:H2568-72.
8. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 2002; 59:1428-59. [DOI via Crossref]    [Pubmed]   
9. Babior BM. NADPH oxidase: an update. Blood 1999; 93:1464-76.
10. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2015; 12:5-23. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
11. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state role of a superoxide-producing NADH oxidase. Circ Res 1998; 82:1094-101. [DOI via Crossref]    [Pubmed]   
12. Li AE, Ito H, Rovira II, Kim KS, Takeda K, Yu ZY, Ferrans VJ, Finkel T. A role for reactive oxygen species in endothelial cell anoikis. Circ Res 1999; 85:304-10. [DOI via Crossref]   
13. Moldovan L, Moldovan NI, Sohn RH, Parikh SA, GoldschmidtClermont PJ. Redox changes of cultured endothelial cells and actin dynamics. Circ Res 2000; 86:549-57. [DOI via Crossref]    [Pubmed]   
14. Yu L, Zhen L, Dinauer MC. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J Biol Chem 1997; 272:27288-94. [DOI via Crossref]    [Pubmed]   
15. Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 1996; 271:31021-4. [DOI via Crossref]    [Pubmed]   
16. Yu L, Quinn MT, Cross AR, Dinauer MC. Gp91phox is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci USA 1998; 95:7993-8. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
17. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase role in cardiovascular biology and disease. Circ Res 2000; 86:494-501. [DOI via Crossref]    [Pubmed]   
18. Faraci FM, Didion SP. Vascular protection superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 2004; 24:1367-73. [DOI via Crossref]    [Pubmed]   
19. Gilbert DL (ed.). Oxygen and Living Processes: An Interdisciplinary Approach. Springer, 1981.
20. Fridovich I. Superoxide dismutases. Annu Rev Biochem 1975; 44:147-49. [DOI via Crossref]    [Pubmed]   
21. Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 1995 ; 270:13399-405. [DOI via Crossref]    [Pubmed]   
22. Oury TD, Day BJ, Crapo JD. Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest 1996; 75:617-36.
23. Stralin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995; 15:2032-6. [DOI via Crossref]    [Pubmed]   
24. Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 1989; 264:7761-4.
25. McCord JM, Keele BB Jr, Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA 1971; 68:1024-7. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
26. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 2005; 24:367-80. [DOI via Crossref]    [Pubmed]   
27. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutasedeficient mice. Proc Natl Acad Sci USA 1996; 93:9782-7. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
28. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11:376-81. [DOI via Crossref]    [Pubmed]   
29. Gongora MC, Qin Z, Laude K, Kim HW, McCann L, Folz JR, Dikalov S, Fukai T, Harrison DG. Role of extracellular superoxide dismutase in hypertension. Hypertension 2006; 48:473-81. [DOI via Crossref]    [Pubmed]   
30. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, Gordon FJ, Harrison DG. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 2010; 55:277-83. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
31. Young RP, Hopkins R, Black PN, Eddy C, Wu L, Gamble GD, Mills GD, Garrett JE, Eaton TE, Rees MI. Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 2006; 61:394-9. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
32. Ganguly K, Depner M, Fattman C, Bein K, Oury TD, Wesselkamper SC, Borchers MT, Schreiber M, Gao F, von Mutius E, Kabesch M, Leikauf GD, Schulz H. Superoxide dismutase 3, extracellular (SOD3) variants and lung function. Physiol Genomics 2009; 37:260-7. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
33. Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem 1993; 268:12231-4.
34. Masters BS, McMillan K, Sheta EA, Nishimura JS, Roman LJ, Martasek P. Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO. as a cellular signal. FASEB J 1996; 10:552-8.
35. Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities. Mol Med Rep 2015; 11:1555-65.
36. Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 1997; 37:339-59. [DOI via Crossref]    [Pubmed]   
37. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA. Structure of nitric oxide synthase oxygenase dime with pterin and substrate. Science 1998; 279:2121-6. [DOI via Crossref]    [Pubmed]   
38. Liu Q, Gross SS. Binding sites of nitric oxide synthases. Methods Enzymol 1996; 268:311-24. [DOI via Crossref]   
39. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 1991; 21:361-74. [DOI via Crossref]    [Pubmed]   
40. Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN. Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Free Radic Biol Med 2006; 40:453-8. [DOI via Crossref]    [Pubmed]   
41. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992; 298:446-51. [DOI via Crossref]   
42. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta 1999; 1411:217-30. [DOI via Crossref]   
43. Feldman PL, Griffith OW, Stuehr DJ. The surprising life of nitric oxide. Chem Eng News 1993; 71:26-38.
44. Denis PA. Alzheimer's disease: a gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery. Med Hypotheses 2013; 81:976-87.
45. Badger MR, Price GD. The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 1994; 45:369-92. [DOI via Crossref]   
46. Isogai Y, Iizuka T, Makino R, Iyanagi T, Orii Y. Superoxideproducing cytochrome b. Enzymatic and electron paramagnetic resonance properties of cytochrome b558 purified from neutrophils. J Biol Chem 1993; 268:4025-31.
47. Isogai Y, Iizuka T, Shiro Y. The mechanism of electron donation to molecular oxygen by phagocytic cytochrome b558. J Biol Chem 1995; 270:7853-7. [DOI via Crossref]    [Pubmed]   
48. Doussiere J, Gaillard J, Vignais PV. Electron transfer across the O2-generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 1996; 35:13400-10. [DOI via Crossref]    [Pubmed]   
49. Cross AR, Higson FK, Jones OT, Harper AM, Segal AW. The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils. Biochem J. 1982; 204:479-85. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
50. Loffler G, Petrifies PE, Heinrich PC (eds) Biochemie und Pathobiochemie. Springer, Berlin, 2006.
51. Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS. Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. Proc Natl Acad Sci USA 2004; 101:5976-81. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
52. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 2002; 33:337-49. [DOI via Crossref]   
53. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 1992; 71:107-18. [DOI via Crossref]   
54. White KA, Marletta MA. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 1992; 31:6627-31. [DOI via Crossref]   
55. Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 1997; 278:425-31. [DOI via Crossref]    [Pubmed]   
56. Abu-Soud HM, Rousseau DL, Stuehr DJ. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem 1996; 271:32515-8. [DOI via Crossref]    [Pubmed]   
57. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84:9265-9. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
58. Lander HM, Milbank AJ, Tauras JM, Hajjar DP, Hempstead BL, Schwartz GD, Kraemer RT, Mirza UA, Chait BT, Burk SC, Quilliam LA. Redox regulation of cell signalling. Nature 1996; 381:380-1. [DOI via Crossref]    [Pubmed]   
59. Murdoch CE, Zhang M, Cave AC, Shah AM. NADPH oxidasedependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res 2006; 71:208-15. [DOI via Crossref]    [Pubmed]   
60. Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 2007; 93:903-7. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
61. Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 2009; 82:9-20. [DOI via Crossref]    [Pubmed]   
62. O'Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol 1999; 12:83-92. [DOI via Crossref]    [Pubmed]   
63. Cape JL, Hurst JK. The role of nitrite ion in phagocyte functionperspectives and puzzles. Arch Biochem Biophys 2009; 484:190-6. [DOI via Crossref]   
64. Keith WG, Powell RE. Kinetics of decomposition of peroxynitrous acid. J Chem Soc A: Inorg Phys Theoret 1969; 90-90.
65. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ. Free radical biology and medicine: it's a gas, man! Am J Physiol Regul Integr Comp Physiol 2006; 291:R491-511.
66. Meli R, Nauser T, Latal P, Koppenol WH. Reaction of peroxynitrite with carbon dioxide: intermediates and determination of the yield of CO3 •– and NO2 •. J Biol Inorg Chem 2002; 7:31-6. [DOI via Crossref]    [Pubmed]   
67. Lymar SV, Hurst JK. Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chem Res Toxicol 1996; 9:845-50.
68. Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA. Microtubule dysfunction by posttranslational nitrotyrosination of α-tubulin: a nitric oxidedependent mechanism of cellular injury. Proc Natl Acad Sci USA 1999; 96:6365-70. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
69. Guix FX, III-Raga G, Bravo R, Nakaya T, de Fabritiis G, Coma M, Miscione GP, Villa-Freixa J, Suzuki T, Fernandez-Busquets X, Valverde MA, de Strooper B, Munoz FJ. Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain 2009; 132:1335-45. [DOI via Crossref]    [Pubmed]   
70. Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005; 24:1311-7. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
71. Sidell BD. Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature. J Exp Biol.1998; 201:1119-28.
72. Krogh A. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol 1919; 52:391-408. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
73. Denis PA. Heuristic consequences of a load of oxygen in microtubules. Biosystems 2014; 118:17-30. [DOI via Crossref]    [Pubmed]   
74. Koren K, Dmitriev RI, Borisov SM, Papkovsky DB, Klimant I. Complexes of Ir(III)-octaethylporphyrin with peptides as probes for sensing cellular O2 . Chembiochem 2012; 13:1184-90. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
75. Benson DM, Knopp JA, Longmuir IS. Intracellular oxygen measurements of mouse liver cells using quantitative fluorescence video microscopy. Biochim Biophys Acta 1980; 591:187-97. [DOI via Crossref]   
76. Weathersby PK, Homer LD, Flynn ET. Homogeneous nucleation of gas bubbles in vivo. J Appl Physiol Respir Environ Exerc Physiol 1982; 53:940-6.
77. Silverman DN, Lindskog S. The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Acc Chem Res 1988; 21:30-6. [DOI via Crossref]   
78. Kuhn TS. The Structure of Scientific Revolutions. University of Chicago Press, 1962.

How to Cite this Article
Pubmed Style

Pierre A. Denis. New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. Oxid Antioxid Med Sci. 2015; 4(3): 103-111. doi:10.5455/oams.281215.rv.021


Web Style

Pierre A. Denis. New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. http://www.oamsjournal.com/?mno=210134 [Access: January 23, 2018]. doi:10.5455/oams.281215.rv.021


AMA (American Medical Association) Style

Pierre A. Denis. New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. Oxid Antioxid Med Sci. 2015; 4(3): 103-111. doi:10.5455/oams.281215.rv.021



Vancouver/ICMJE Style

Pierre A. Denis. New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. Oxid Antioxid Med Sci. (2015), [cited January 23, 2018]; 4(3): 103-111. doi:10.5455/oams.281215.rv.021



Harvard Style

Pierre A. Denis (2015) New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. Oxid Antioxid Med Sci, 4 (3), 103-111. doi:10.5455/oams.281215.rv.021



Turabian Style

Pierre A. Denis. 2015. New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. Oxidants and Antioxidants in Medical Science, 4 (3), 103-111. doi:10.5455/oams.281215.rv.021



Chicago Style

Pierre A. Denis. "New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries." Oxidants and Antioxidants in Medical Science 4 (2015), 103-111. doi:10.5455/oams.281215.rv.021



MLA (The Modern Language Association) Style

Pierre A. Denis. "New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries." Oxidants and Antioxidants in Medical Science 4.3 (2015), 103-111. Print. doi:10.5455/oams.281215.rv.021



APA (American Psychological Association) Style

Pierre A. Denis (2015) New insights into oxidative and nitrosative stress: the revolution of antibubble biomachineries. Oxidants and Antioxidants in Medical Science, 4 (3), 103-111. doi:10.5455/oams.281215.rv.021





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 11 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 7 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 6 times [Click to see citing articles]