ISSN 2146-8389
 

Invited Review Open Access


Redox signaling associated with thyroid hormone action: perspectives in medical sciences

Luis A. Videla.

Cited by (2)

Abstract
Redox signaling, as a consequence of thyroid hormone (TH)-induced energy metabolism, triggers adaptive cellular changes to resume homeostasis. In the liver, this is associated with the activation of redox-sensitive transcription factors promoting cell protection and survival, including the upregulation of antioxidant, anti-apoptotic, anti-inflammatory, and cell proliferation responses, with concomitant higher energy supply and detoxification potentials.
Beneficial effects of THs are also observed in extrahepatic tissues against different types of noxious stimuli evidenced in preclinical studies, as well as in several clinical conditions after restoration of the normal levels of THs. Future additional preclinical and clinical studies are needed in order to validate diagnostic biomarkers and the suitable endpoints to be endorsed, and to solve discrepancies concerning the low number of patients studied and the type of trial and TH protocol employed.

Key words: Cell protection, liver preconditioning, organ functional recovery, redox signaling, thyroid hormone


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Luis A. Videla
on Google
on Google Scholar
Article Statistics
 Viewed: 488
Downloaded: 148
Cited: 2

REFERENCES
1. Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab 2007; 21:193-208. [DOI via Crossref]    [Pubmed]   
2. Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 2008; 29:211-8. [DOI via Crossref]    [Pubmed]   
3. Crone DE, Kim HS, Spindler SR. Alpha and beta thyroid hormone receptors bind immediately adjacent to the rat growth hormone gene TATA box in a negatively hormone-responsive promoter region. J Biol Chem 1990; 265:10851-6.
4. Kim SW, Ho SC, Hong SJ, Kim KM, So, EC, Christoffolete M, Harney JW. A novel mechanism of thyroid hormone-dependent negative regulation y thyroid hormone receptor, nuclear receptor corepressor (NCoR), and GAGA-binding factor on the rat CD44 promoter. J Biol Chem 2005; 280:14545-55. [DOI via Crossref]    [Pubmed]   
5. Dong H, Paquette M, Williams A, Zoeller RT, Wade M, Yauk C. Thyroid hormone may regulate mRNA abundance in liver by acting on microRNAs. PLoS ONE 2010; 5:e12136.
6. Yap CS, Sinha RA, Ota S, Katsuki M, Yen PM. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochem Biophys Res Commun 2013; 440:635-9. [DOI via Crossref]    [Pubmed]   
7. Davis FB, Tang HY, Shih A, Keating T, Lansing L, Hercberg A, Fenstermaker RA, Mousa A, Mousa SA, Davis PJ, Lin HY. Acting via cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 2006; 66:7270-5. [DOI via Crossref]    [Pubmed]   
8. Davis FB, Mousa SA, O,Connor L, Mohamed S, Lin HY, Cao HJ, Davis PJ. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is in initiated at the cell surface. Circ Res 2004; 94:1500-6. [DOI via Crossref]    [Pubmed]   
9. Lombardi A, Lanni A, Moreno M, Brabd MD, Goglia F. Effect of 3,5-di-yodo-L-thyronine on the mitochondrial energy-transduction apparatus. Biochem J 1998; 330:521-6. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
10. Lei J, Wendt CH, Fan D, Mariash CN, Ingbar DH. Developmental acquisition of T3-sensitive Na-K-ATPase stimulation by rat alveolar epithelial cells. Am J Physiol 2007; 292:L6-14.
11. Videla LA, Fernandez V, Cornejo P, Vargas R, Castillo I. Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Rev Mol Med 2015; 17:e10.
12. Leonarduzzi G, Sottero B, Testa G, Biasi F, Poli G. New insights into redox-modulated cell signaling. Cur Pharm Des 2011; 17:3994-4006. [DOI via Crossref]   
13. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015; 4:180-3. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
14. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem-Biol Intact 2014; 224:164-75. [DOI via Crossref]    [Pubmed]   
15. Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010; 49:835-42. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
16. Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol Metab 2014; 25:538-45. [DOI via Crossref]    [Pubmed]   
17. Fernandez V, Videla LA. Influence of hyperthyroidism on superoxide radical and hydrogen peroxide production by rat liver submitochondrial particles. Free Radic Res Commun 1993; 18:329-35. [DOI via Crossref]    [Pubmed]   
18. Silvestri E, Schiavo L, Lombardi A, Goglia F. Thyroid hormones as molecular determinants of thermogenesis. Acta Physiol Scand 2005; 184:265-83. [DOI via Crossref]    [Pubmed]   
19. Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab 2004; 286:E968-74.
20. Silvestri E, Moreno M. Schiavo L, de Lange P, Lombardi A, Chambery E, Parente A, Lanni A, Goglia F. A proteomics approach to identify protein expression changes in rat live following administration of 3,5,3,-triiodo-L-thyronine. J Proteome Res 2006; 5:2317-27. [DOI via Crossref]    [Pubmed]   
21.Jesina P, Kholova D, Bolehovska R, Cervinkova Z, Drahota Z, Houstel J. Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria. Physiol Res 2004; 53:305-10.
22. Videla LA, Fernandez V, Tapia G, Varela P. Thyroid hormone calorigenesis and mitochondrial redox signaling: upregulation of gene expression. Front Biosci 2007; 12:1220-8. [DOI via Crossref]    [Pubmed]   
23. Fernandez V, Castillo I, Tapia G, Uribe-Echevarría S, Uribe M, Denise-Cartier D, Santander G, Vial T, Videla LA. Thyroid hormone preconditioning: protection against ischemia-reperfusion liver injury in the rat. Hepatology 2007; 45: 170-7. [DOI via Crossref]    [Pubmed]   
24.Tapia G, Fernandez V, Varela P, Cornejo P, Guerrero J, Videla LA. Thyroid hormone-induced oxidative stress triggers nuclear factor-κB activation and cytokine gene expression in rat liver. Free Radic Biol Med 2003; 35:257-65. [DOI via Crossref]   
25.Tapia G, Fernandez V, Pino C, Ardiles R, Videla LA. The acute-phase response of the liver in relation to thyroid hormone-induced redox signaling. Free Radic Biol Med 2006; 40:1628-35. [DOI via Crossref]    [Pubmed]   
26. Fernandez V, Reyes S, Bravo S, Sepúlveda R, Romanque P, Santander G, Castillo I, Varela P, Tapia G, Videla LA. Involvement of Kupffer cell-dependent signaling in T3-induced hepatocyte proliferation in vivo. Biol Chem 2007; 388:831-7. [DOI via Crossref]    [Pubmed]   
27. Romanque P, Cornejo P, Valdes S, Videla LA. Thyroid hormone administration induces rat liver Nrf2 activation: suppression by N-acetylcysteine pretreatment. Thyroid 2011; 21:652-62. [DOI via Crossref]    [Pubmed]   
28.Tapia G, Santibanez C, Farias J, Fuenzalida G, Varela P, Videla LA, Fernandez V. Kupffer-cell activity is essential for thyroid hormone rat liver preconditioning. Mol Cell Endocrinol 2010; 323:292-7. [DOI via Crossref]    [Pubmed]   
29. Stadler J, Bentz BG, Harbrecht BG, Di Silvio M, Curran RD, Billiar TR, Hoffman RA, Simmons RL. Tumor necrosis factor alpha inhibits hepatocyte mitochondrial respiration. Ann Surg 1992; 216:539-46. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
30. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006; 26:1175-86. [DOI via Crossref]    [Pubmed]   
31. Grant N. The role of triiodothyronine-induced substrate cycles in the response to overnutrition: thyroid hormone as an antioxidant. Med Hypotheses 2007; 68:641-8. [DOI via Crossref]    [Pubmed]   
32. Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett 2003; 543:5-10. [DOI via Crossref]   
33. Goglia F, Sklachev VP. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocation of fatty acid peroxides from the inner to outer membrane leaflet. FASEB J 2003; 17:1585-91. [DOI via Crossref]    [Pubmed]   
34. Sinha R, You SH, Zhou J, Siddique MM, Bay BH, Zhu X, Privalsky ML, Cheng SY, Stevens RD, Summers SA, Newgard CB, Lazar MA, Yen PM. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Invest 2014; 122:2428-38. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
35. Videla LA, Fernandez V, Cornejo P, Vargas R, Carrasco J, Fernandez J, Varela N. Causal role of oxidative stress in unfolded protein response development in the hyperthyroid state. Free Radic Biol Med 2015; 89:401-8. [DOI via Crossref]    [Pubmed]   
36. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagal H, Ogawa S, Kaufman RJ, Momoi T. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Diff 2007; 14:230-9. [DOI via Crossref]    [Pubmed]   
37. Videla LA, Fernandez V, Cornejo P, Vargas R. Metabolic basis for thyroid hormone liver preconditioning: upregulation of AMPactivated protein kinase signaling. ScientificWorldJournal 2012; 2012:475675. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
38. Viollet B, Guigas B, Leclerc J,Hébrad S, Lantier L, Mounier R, Andreelli F, Foretz M. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol 2009; 196:81-98. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
39. Vargas R, Ortega Y, Bozo V, Andrade M, Minuzzi G, Cornejo P, Fernandez V, Videla LA. Thyroid hormone activates rat liver adenosine 5'-monophosphate-activated protein kinase: relation to CaMKKβ, TAK1, and LKB1 expression and energy status. J Biol Regul Homeost Agents 2013; 27:989-99.
40. Videla LA, Fernandez V, Cornejo P, Vargas R, Morales P, Ceballo J, Fischer A, Escudero N, Escobar O. T3-induced liver AMP-activated protein kinase signaling: redox dependence and upregulation of downstream targets. Word J Gastroenterol 2014; 20:17416-25. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
41. Choi SI, Kim SJ, Lee KT, Kim J, Mu J, Nirnbaum MJ, Soo Kim S, Ha J. The regulation of AMP-activated protein kinase by H2O2. Biochem Biophys Res Commun 2001; 287:92-7. [DOI via Crossref]    [Pubmed]   
42.Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol 2009; 296:C116-23.
43. Corton JM, Gillespie JG, Hardie DG. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 1994; 4:315-24. [DOI via Crossref]   
44. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMPactivated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995; 270:17513-20. [DOI via Crossref]    [Pubmed]   
45. Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shorouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokochi Y, Yokoyam S. Structural basis for compound C inhibition of the human AMP-activated protein knase α2 subunit kinase domain. Acta Cryst 2011; D67:480-7.
46.Tapia G, Cornejo P, Fernández V, Videla LA. Protein oxidation in thyroid hormone-induced liver oxidative stress: relation to lipid peroxidation. Toxicol Lett 1999; 106:209-14. [DOI via Crossref]   
47.Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334:1081-6. [DOI via Crossref]    [Pubmed]   
48. Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 2004; 15:767-76. [DOI via Crossref]    [Pubmed]   
49. Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 2007; 18:716-31. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
50. Ameri K, Harris AL. Activating transcription factor 4. Int J Biochem Cell Biol 2008; 40:14-21. [DOI via Crossref]    [Pubmed]   
51. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Rev 2008; 7:1013-30. [DOI via Crossref]   
52. Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int J Biochem Cell Biolm 2006; 38:317-32. [DOI via Crossref]    [Pubmed]   
53. Noiva R. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 1999; 10:481-93. [DOI via Crossref]    [Pubmed]   
54. Sevier CS, Kaiser CA. Ero 1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 2008; 1783:549-56. [DOI via Crossref]    [Pubmed]   
55. D'Espessailles A, Dossi C, Intriago G, Leiva P, Romanque P. Hormonal pretreatment preserves liver regenerative capacity and minimizes inflammation after partial hepatectomy. Ann Hepatol 2013; 12:881-91.
56. Alisi A, Demori I, Spagnuolo S, Pierantozzi E, Fugassa E, Leoni S. Thyroid status affects rat liver regeneration after partial hepatectomy by regulating cell cycle and apoptosis. Cell Physiol Biochem 2005; 15:69-76. [DOI via Crossref]    [Pubmed]   
57. Rebolledo RA, Van Erp AC, Ottens PJ, Wiersema-Buist J, Leuvenink HGD, Romanque P. Anti-apoptotic effects of 3,3,5-triiodoL-thyronine on the liver od brain-dead rats. PLoS ONE 2015; 10:e0138749.
58. Mukherjee S, Samanta L, Roy A, Bhanja S, Chainy GB. Supplementation of T3 recovers hypothyroid rat liver cells from oxidative damaged inner mitochondrial membrane leading to apoptosis. Biomed Res Int 2014; 2014:590897. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
59. Kumar A, Taliyan R, Sharma PL. Evaluation of thyroid hormone induced pharmacological preconditioning on cardiomyocyte protection against ischemic-reperfusion injury. Indian J Pharmacol 2012; 44:68-72. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
60. Pantos CI, Malliopoulous VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimber N, Varonos DD, Cokkinos V. Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 2002; 12:325-9. [DOI via Crossref]    [Pubmed]   
61. De Castro AL, Tavares AV, Campos C, Fernandes RO, Siqueira R, Conzatti A, Bicca AM, Fernandes TR, Sartorio CL, Schenkel PC, Bello-Klein A, da Rosa Araujo AS. Cardioprotective effects of thyroid hormones in a rat model of myocardial infarction are associated with oxidative stress reduction. Mol Cell Endocrinol 2014; 391:22-9. [DOI via Crossref]    [Pubmed]   
62. Pantos C, Malliopoulous V, Mourouzis I, Thempeyioto A, Paizis I, Dimopoulos A, Saranteas T, Xinaris C, Cokkinos DV. Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 2006; 38:308-13. [DOI via Crossref]    [Pubmed]   
63. Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, Tentolouris N, Pantos C. Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism 2013; 62:1387-93. [DOI via Crossref]    [Pubmed]   
64. Heather LC, Cole MA, Atherton HJ, Coumans WA, Evans RD, Tyler DJ, Glatz JF, Luiken JJ, Clarke K. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart. Endocrinology 2010; 24:422-31. [DOI via Crossref]    [Pubmed]   
65. Nicolini G, Pitto L, Kusmic C, Balzan S, Sabatino L, Iervasi G, Forini F. New insights into mechanisms of cardioprotection mediated by thyroid hormones. J Thyroid Res 2013; 2013:264387. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
66. Sutter PM, Thulin G, Stromski M, Ardito KM, Kashgarian M, Siegel NJ. Beneficial effect of thyroxin in the treatment of ischemic acute renal failure. Pediatr Nephrol 1988; 2:1-7. [DOI via Crossref]    [Pubmed]   
67. Li F, Lu S, Zhu R, Zhou Z, Ma L, Cai L, Liu Z. Heme-oxygenase-1 is induced by thyroid hormone and involved in thyroid hormone preconditioning-induced protection against renal warm ischemia in rat: Mol Cell Endocrinol 2011; 339:54-62.
68. Ferreyra C, O'Valle F, Osorio JM, Moreno JM, Rodríguez I, Vargas F, Osuna A. Effect of preconditioning With triiodothyronine on renal ischemia/reperfusion injury and poly(ADP-Ribose) polymerase expression in rats. Transpl Proc 2009; 41:2073-5. [DOI via Crossref]    [Pubmed]   
69. Kim SM, Kim SW, Jung YJ, Min SI, Min SK, Kim SJ, Ha J. Preconditioning with thyroid hormone (3,5,3.triiodothyronine) prevents renal ischemia-reperfusion injury in mice. Surgery 2014; 155:554-61. [DOI via Crossref]    [Pubmed]   
70. Genovese T, Impellizzeri D, Ahmad A, Cornelius C, Campolo M, Cuzzocrea S, Esposito E. Post-ischemic thyroid hormone treatment in a rat model of acute stroke. Brain Res 2013; 1513:92-202. [DOI via Crossref]    [Pubmed]   
71. Lin HY, Davis FB, Luidens MK, Mousa SA, Cao JH, Zhou M, Davis PJ. Molecular basis for certain neuroprotective effects of thyroid hormone. Front Mol Neurosci 2011; 4:29. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
72. Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates AKT and prevents serum starvation-induce cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2005; 39:841-4. [DOI via Crossref]    [Pubmed]   
73.Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A, Colligiani D, Rajagopalan V, Pol CJ, Gerdes AM. Low-dose T3 replacement restores depressed cardiac T3 levels, preserved coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med 2014; 20:302-12. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
74. Verga Falzacappa C, Timperi E, Bucci B, Amendola B, Piergrossi P, D,Amico D, Santaguida MG, Centanni M, Misiti S. T3 preserves ovarian granulosa cells from chemotherapy induced apoptosis. J Endocrinol 2012; 215:281-9. [DOI via Crossref]    [Pubmed]   
75. Safer JD, Crawford TM, Holick MF. A role for thyroid hormone in wound healing through keratin gene expression. Endocrinology 2004; 145:2357-61. [DOI via Crossref]    [Pubmed]   
76. Bhargava M, Runyon MR, Smirnov D, Lei J, Groppoli TJ, Mariash CN, Wagensteen OD, Ingbar DH. Triiodo-L-thyronine rapidly stimulates alveolar fluid clearance in normal and hyperoxia-injured lungs. Am J Respir Crit Care Med 2008; 178:506-21. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
77. Panaite PA, Barakat-Walter I. Thyroid hormone enhances transected axonal regeneration and muscle reinervation following rat sciatic nerve injury. J Neurosci Res 2010; 88:1751-63.
78. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol 2015; 3:816-25. [DOI via Crossref]   
79. Fisher DA. Thyroid system immaturities in very low bird weight premature infants. Sem Perinatol 2008; 32:387-97. [DOI via Crossref]    [Pubmed]   
80. van Wassenaer AG, Kok JH. Trials with thyroid hormone in preterm infants: clinical and neurodevelopmental effects. Sem Perinatol 2008; 32:423-30. [DOI via Crossref]    [Pubmed]   
81.Tremont G, Stern RA. Minimizing the cognitive effects of lithium therapy and electroconvulsive therapy using thyroid hormone. Int J Neuropsicopharmacol 2000; 3:175-86. [DOI via Crossref]    [Pubmed]   
82. Bauer M, London ED, Rasgon N, Berman SM, Frye MA, Altshuler LL, Mandelkern MA, Bramen J, Voytek B, Woods R, Mazziotta JC, Whybrow PC. Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improved mood in bipolar depression. Mol Psychiatry 2005; 10:456-69. [DOI via Crossref]    [Pubmed]   
83. Novitzky D, Mi Z, Sun Q, Collins JF, Cooper DK. Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective analysis. Transplantation 2014; 98:1119-27. [DOI via Crossref]    [Pubmed]   
84. Macdonald PS, Aneman A, Bhonagiri D, Jones D, O'Callaghan G, Silvester W, Watson A, Dobb G. A systematic review and metaanalysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Crit Care Med 2012; 40:1635-44. [DOI via Crossref]    [Pubmed]   
85. Novitzky D, Mi Z, Videla LA, Collins JF, Cooper DKC. Thyroid hormone therapy and procurement of livers from brain-dead donors. Endocrine Res 2016; [DOI via Crossref]    [DOI via Crossref]   
86. Nwose EU, Bwititi PT, Chalada MJ. Oxidative stress research: a framework to relate basic science to clinical practice. Oxid Antioxid Med Sci 2013; 2:225-9. [DOI via Crossref]   

This Article Cited By the following articles

Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: Role of AMP-activated protein kinase
Immunology Letters 2017; 184(): 92.

1
 
Crosstalk mechanisms in hepatoprotection: Thyroid hormone-docosahexaenoic acid (DHA) and DHA-extra virgin olive oil combined protocols
Pharmacological Research 2017; (): .

2
 

How to Cite this Article
Pubmed Style

Luis A. Videla. Redox signaling associated with thyroid hormone action: perspectives in medical sciences. Oxid Antioxid Med Sci. 2016; 5(1): 8-14. doi:10.5455/oams.030316.rv.023


Web Style

Luis A. Videla. Redox signaling associated with thyroid hormone action: perspectives in medical sciences. http://www.oamsjournal.com/?mno=214211 [Access: January 23, 2018]. doi:10.5455/oams.030316.rv.023


AMA (American Medical Association) Style

Luis A. Videla. Redox signaling associated with thyroid hormone action: perspectives in medical sciences. Oxid Antioxid Med Sci. 2016; 5(1): 8-14. doi:10.5455/oams.030316.rv.023



Vancouver/ICMJE Style

Luis A. Videla. Redox signaling associated with thyroid hormone action: perspectives in medical sciences. Oxid Antioxid Med Sci. (2016), [cited January 23, 2018]; 5(1): 8-14. doi:10.5455/oams.030316.rv.023



Harvard Style

Luis A. Videla (2016) Redox signaling associated with thyroid hormone action: perspectives in medical sciences. Oxid Antioxid Med Sci, 5 (1), 8-14. doi:10.5455/oams.030316.rv.023



Turabian Style

Luis A. Videla. 2016. Redox signaling associated with thyroid hormone action: perspectives in medical sciences. Oxidants and Antioxidants in Medical Science, 5 (1), 8-14. doi:10.5455/oams.030316.rv.023



Chicago Style

Luis A. Videla. "Redox signaling associated with thyroid hormone action: perspectives in medical sciences." Oxidants and Antioxidants in Medical Science 5 (2016), 8-14. doi:10.5455/oams.030316.rv.023



MLA (The Modern Language Association) Style

Luis A. Videla. "Redox signaling associated with thyroid hormone action: perspectives in medical sciences." Oxidants and Antioxidants in Medical Science 5.1 (2016), 8-14. Print. doi:10.5455/oams.030316.rv.023



APA (American Psychological Association) Style

Luis A. Videla (2016) Redox signaling associated with thyroid hormone action: perspectives in medical sciences. Oxidants and Antioxidants in Medical Science, 5 (1), 8-14. doi:10.5455/oams.030316.rv.023





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 11 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 7 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 6 times [Click to see citing articles]