ISSN 2146-8389
 

Original Research (Original Article) Open Access


Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb

Junsei Taira, Wakana Ohminea, Hitoshi Nanbub, Katsuhiro Uedab.

Cited by (5)

Abstract
In this study, the six phenolic compounds, such as kaempherol, catechin, glucodistylin, aglimonolide-6-O-glucoside and quercitrin from the extract of Agrimonia pilosa Ledeb inhibited nitrite accumulation as an indicator of nitric oxide (NO) in LPS-stimulated RAW264.7 macrophages. 4-ethyl-2-hydroxyamino-5-nitro-3-hexenamide (NOR3) as an NO donor was used in the presence of these compounds and the nitrite level then decreased, indicating that these compounds would potentially have nitrogen radical scavenging activity. An electron spin resonance (ESR) study of the NO generating system containing NOR3 and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) as an NO detection reagent with or without the compound provided evidence that these compounds, such as catechin, glucodistylin and hyperin, directly scavenged NO and that the presence of a catechol group on the B ring in the molecule is responsible for the NO scavenging activity. All of the tested phenolic compounds suppressed the iNOS induction in LPS-stimulated cells. Particularly, the suppression of iNOS protein expression by hyperin and quercitrin was distinct among in the examined compounds. This study demonstrated that the compounds can decrease the level of NO in the cells through involving both a decrease in NO production and a nitrogen radical-scavenging effect.

Key words: Agrimonia pilosa Ledeb; Electron spin resonance; Nitric oxide; Nitric oxide synthase; RAW264.7 macrophages


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Junsei Taira
Articles by Wakana Ohminea
Articles by Hitoshi Nanbub
Articles by Katsuhiro Uedab
on Google
on Google Scholar
Article Statistics
 Viewed: 3361
Downloaded: 1002
Cited: 5

REFERENCES
1.Burney S, Caufield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxinitrite. Mutat Res 1999; 424:37-49.

http://dx.doi.org/10.1016/S0027-5107(99)00006-8

[Pubmed]   


2.Stefen Y, Jung T, Klotz LO, Schewe T, Grune T, Sies H. Protein modification elicited by oxidized low-density lipoprotein (LDL) in endothelial cell. Protection by (-)-epicatechin. Free Radic Biol Med 2007; 42:955-70.

http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.024

[
Pubmed]   


3.Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271:C1424-37.

[
Pubmed]   


4.Yu L, Gengro PE, Niedrberger M, Burke TJ, Schrier RW. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci USA 1994; 91:1691-5.

http://dx.doi.org/10.1073/pnas.91.5.1691

[
Pubmed]    [PMC Free Fulltext]   


5.Pacher P, Joseph S, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87:315-424.

http://dx.doi.org/10.1152/physrev.00029.2006

[
Pubmed]    [PMC Free Fulltext]   


6.Hobbs A. J, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 1999; 39:191-220.

http://dx.doi.org/10.1146/annurev.pharmtox.39.1.191

[
Pubmed]   


7.Shen SC, Lee WR, Lin HY, Huang, HC, Ko Ch, Yang LL, Chen YC. In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production. Eur J Pharmacol 2002; 446:187-94.

http://dx.doi.org/10.1016/S0014-2999(02)01792-2


8.Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E, Caccavo D. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 2000; 6:205-14.

[
Pubmed]   


9.Koshiura R, Miyamoto K, Ikeya Y, Taguchi, H. Antitumor activity of methanol extaract from roots of Agrimonia pilosa Ledeb. Jap J Pharmacol 1985; 38:9-16.

http://dx.doi.org/10.1254/jjp.38.9

[
Pubmed]   


10.Park EJ, Oh H, Kang TH, Sohn DH, Kim YC. An isocoumarin with hepatoprotective activity in Hep G2 and primary hepatocytes from Agrimonia pilosa. Arch Pharm Res 2004; 27:944-46.

http://dx.doi.org/10.1007/BF02975848

[
Pubmed]   


11.Kato H, Wel Li, Koike M, Wang Y, Koike K. Phenolic glycosides from Agrimonia pilosa. Phytochemistry 2010; 71:1925-9.

http://dx.doi.org/10.1016/j.phytochem.2010.08.007

[
Pubmed]   


12.Kasai S, Watanabe S, Kawabata J, Tahara S, Mizutani J. Antimicrobial catechin derivatives of Agrimoia Pilosa. Phytochemistry 1992; 31:787-9.

http://dx.doi.org/10.1016/0031-9422(92)80015-7


13.Jung M, Park M. Acetylcholinesterase inhibition by flavonoids from Aglimonia pilosa. Molecules 2007; 12:2130-9.

http://dx.doi.org/10.3390/12092130

[
Pubmed]   


14.Taira J, Nanbu H, Ueda K. Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264.7 macrophages. Food Chem 2009; 115:1221-7.

http://dx.doi.org/10.1016/j.foodchem.2009.01.030


15.Jung CH, Kim JH, Park S, Kweon DH, Kim SH, Ko SG. Inhibitory effect of Agrimonia pilosa Ledeb on inflammation by suppression of iNOS and ROS production. Immunol Invest 39; 2010:159-70.

http://dx.doi.org/10.3109/08820130903501790

[
Pubmed]   


16.Ferrari M, Fomasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 1990; 131:165-72.

http://dx.doi.org/10.1016/0022-1759(90)90187-Z

[
Pubmed]   


17.Taira J, Misík V, Riesz P. Nitric oxide formation from hydroxylamine by myoglobin and hydrogen peroxide. Biochim Biophys Acta 1997; 1336:502-8.

http://dx.doi.org/10.1016/S0304-4165(97)00064-0

[
Pubmed]   


18.Pacelli R, Taira J, Cook JA, Wink DA, Krishna MC. Hydroxyurea reacts with heme proteins to generate nitric oxide. Lancet 1996; 347:900.

http://dx.doi.org/10.1016/S0140-6736(96)91378-1


19.Maria RGV, Andressa ES, Ivo JCV, Leda M, Raimundo BF, Aurea E. Flavonoids from Annona dioica leaves and their effects in ehrlich carcinoma cells, DNA-topoisomelase I and II. J Braz Chem Soc 2007; 18:1554-9.

http://dx.doi.org/10.1590/S0103-50532007000800016


20.Anke K, Gisela V, Vincenz G, Jorg L, Axel Z. Phenols from Fagus sylvatica and their role in deffence against Cryptococcus fagisuga. Phytochemistry 1997; 45:51-7.

http://dx.doi.org/10.1016/S0031-9422(96)00771-6


21.Cren-Olive C, Wieruszeski JM, Maes E, Rolando C. Catechin and epicatechin deprotonation followed by 13C NMR. Tetrahedron Lett 2002; 43:4545-9.

http://dx.doi.org/10.1016/S0040-4039(02)00745-1


22.Li T, Xiu FZ, Bao ZY, Hai Ms, Li B D, Ya ZZ, L FW, Ya LT, Yang L. A novel flavonoid from Lespendza virgata (Thunb.): Structural elucidation and antioxidative activity. Bioorg Med Chem Lett 2007; 17:6311-5.

http://dx.doi.org/10.1016/j.bmcl.2007.09.003

[
Pubmed]   


23.van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A. Flavonoids as scavengers of nitric oxide. Biochem Biophys Res Commun 1995; 214:755-59.

http://dx.doi.org/10.1006/bbrc.1995.2350

[
Pubmed]   


24.Haenen GR, Paquay JB, Korthouwer RE, Bast A. Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Commun 1997; 236:591-3.

http://dx.doi.org/10.1006/bbrc.1997.7016

[
Pubmed]   


25.Nakagawa T, Yokozawa T. Direct scavenging of nitric oxide by green tea. Food Chem Toxicol 2002; 40:1745-50.

http://dx.doi.org/10.1016/S0278-6915(02)00169-2

[
Pubmed]   


26.Pfeiffer S, Leopold E, Hemmens B, Schmidt K, Werner ER, Mayer B. Interference of carboxy-PTIO with nitric oxide and peroxynitrite-mediated reactions. Free Radic Biol Med 1996; 22:787-94.

http://dx.doi.org/10.1016/S0891-5849(96)00407-8

[
Pubmed]   


27.Chen YC, Yang LL, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem Pharmacol 2000; 59:1445-57.

http://dx.doi.org/10.1016/S0006-2952(00)00255-0

[
Pubmed]   


28.Chen YC, Shen SC, Chen LG, Lee TJF, Yang LL. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxyggenase-2 gene expression induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol 2001; 61:1417-27.

http://dx.doi.org/10.1016/S0006-2952(01)00594-9

[
Pubmed]   


29.Callejas NA, Casado M, Bosca L, Martin-Sanz P. Requirement of nuclear factor kappa B for the constitutive expression of nitric oxide synthase-2 and cyclooxigenase-2 in rat trophoblasts. J Cell Sci 1999; 112:3147-55.

[
Pubmed]   


30.Barmes PJ, Karin M. Nuclear factor-κB- a pivotal transcription factor in chronic inflammatory diseases. New Engl J Med 1997; 336:1066-71.

http://dx.doi.org/10.1056/NEJM199704103361506

[
Pubmed]   


31.Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 1999; 20:1945-52.

http://dx.doi.org/10.1093/carcin/20.10.1945

[
Pubmed]   


32.Sumi D, Akimori M, Inoue K, Takano H, Kumagai Y. 1,2-Naphthoquinone suppress lipopolysaccharide dependnt activation of IKKβ/NF-kB/NO signaling: an alternative mechanism for the disturbance of inducible NO synthase-catalyzed NO formation. J Toxicol Sci 2010; 35:891-8.

http://dx.doi.org/10.2131/jts.35.891

PMid:21139339

This Article Cited By the following articles

Therapeutic potential of the immunomodulatory proteins Wuchereria bancrofti L2 and Brugia malayi abundant larval transcript 2 against streptozotocin-induced type 1 diabetes in mice
J. Helminthol. 2017; 91(05): 539.

1
 
Therapeutic potential of the immunomodulatory proteins Wuchereria bancrofti L2 and Brugia malayi abundant larval transcript 2 against streptozotocin-induced type 1 diabetes in mice
J. Helminthol. 2016; (): 1.

2
 
Dual biological functions of the apoptotic activity and anti-inflammatory effect by alcyonolide congeners from the Okinawan soft coral, Cespitularia sp.
Bioorganic & Medicinal Chemistry Letters 2015; 25(20): 4496-4499.

3
 
Brugia malayi abundant larval transcript 2 protein treatment attenuates experimentally-induced colitis in mice.
Indian journal of experimental biology 2015; 53(11): 732-9.

4
 
Brugia malayicystatin therapeutically ameliorates dextran sulfate sodium-induced colitis in mice
Journal of Digestive Diseases 2015; 16(10): 585-594.

5
 

How to Cite this Article
Pubmed Style

Taira J, Ohminea W, Nanbub H, Uedab K. Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. Oxid Antioxid Med Sci. 2013; 2(1): 21-28. doi:10.5455/oams.100313.or.031


Web Style

Taira J, Ohminea W, Nanbub H, Uedab K. Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. http://www.oamsjournal.com/?mno=33530 [Access: January 23, 2018]. doi:10.5455/oams.100313.or.031


AMA (American Medical Association) Style

Taira J, Ohminea W, Nanbub H, Uedab K. Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. Oxid Antioxid Med Sci. 2013; 2(1): 21-28. doi:10.5455/oams.100313.or.031



Vancouver/ICMJE Style

Taira J, Ohminea W, Nanbub H, Uedab K. Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. Oxid Antioxid Med Sci. (2013), [cited January 23, 2018]; 2(1): 21-28. doi:10.5455/oams.100313.or.031



Harvard Style

Taira, J., Ohminea, W., Nanbub, H. & Uedab, K. (2013) Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. Oxid Antioxid Med Sci, 2 (1), 21-28. doi:10.5455/oams.100313.or.031



Turabian Style

Taira, Junsei, Wakana Ohminea, Hitoshi Nanbub, and Katsuhiro Uedab. 2013. Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. Oxidants and Antioxidants in Medical Science, 2 (1), 21-28. doi:10.5455/oams.100313.or.031



Chicago Style

Taira, Junsei, Wakana Ohminea, Hitoshi Nanbub, and Katsuhiro Uedab. "Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb." Oxidants and Antioxidants in Medical Science 2 (2013), 21-28. doi:10.5455/oams.100313.or.031



MLA (The Modern Language Association) Style

Taira, Junsei, Wakana Ohminea, Hitoshi Nanbub, and Katsuhiro Uedab. "Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb." Oxidants and Antioxidants in Medical Science 2.1 (2013), 21-28. Print. doi:10.5455/oams.100313.or.031



APA (American Psychological Association) Style

Taira, J., Ohminea, W., Nanbub, H. & Uedab, K. (2013) Inhibition of LPS-stimulated NO production in RAW264.7 macrophages through iNOS suppression and nitrogen radical scavenging by phenolic compounds from Agrimonia pilosa Ledeb. Oxidants and Antioxidants in Medical Science, 2 (1), 21-28. doi:10.5455/oams.100313.or.031





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 11 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 7 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 6 times [Click to see citing articles]