ISSN 2146-8389
 

Review Article Open Access


Mild mitochondrial uncoupling as potentially effective intervention to slow aging

Vladimir Illich Padalko.

Abstract
The main objective of this review is to elucidate the role of endogenous reactive oxygen species (primarily mitochondrial origin) in the aging process. We have attempted to highlight the findings from several investigations about the relationship between reduction in mitochondrial production of free radicals (using specific antioxidants or “mild” mitochondrial uncoupling) and life span. Several studies on animal models have shown that aging rates and life expectancy could be modified using mitochondria-targeted antioxidants and uncouplers. In particular, different uncoupling strategies were able to extend life span in models ranging from yeast to mammals. These findings are in line with the “uncoupling to survive” hypothesis, suggesting that uncoupling could be an approach to promote life span extension due to its ability to prevent the formation of reactive oxygen species. Obviously, because of the high toxicity, 2,4-dinitrophenol and other uncouplers themselves can not be applied in practical geriatrics, but their low toxic analogues having controlled and “soft” action either agonists affecting the natural way of uncoupling (uncoupling proteins, UCPs) are promising for the development of means for control of tissue redox state and animal life span.

Key words: Aging; Mitochondrial uncoupling; Oxidative stress


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Vladimir Illich Padalko
on Google
on Google Scholar
Article Statistics
 Viewed: 2205
Downloaded: 590
Cited: 0

REFERENCES
1.Porter R. The greatest benefit to mankind. A medical history of humanity, Norton, New York, NY, 1997.


2.Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007; 292:R18-36.

http://dx.doi.org/10.1152/ajpregu.00327.2006

[
Pubmed]   


3.Iliadi KG, Knight D, Boulianne GL. Healthy aging - insights from Drosophila. Front Physiol 2012; 3:106.

http://dx.doi.org/10.3389/fphys.2012.00106

[
Pubmed]    [PMC Free Fulltext]   


4.Vina J, Borras C, Miquel J. Theories of aging. IUBMB Life 2007; 59:249-54.

http://dx.doi.org/10.1080/15216540601178067

[
Pubmed]   


5.Cefalu CA. Theories and mechanisms of aging. Clin Geriatr Med 2011; 27:491-506.

http://dx.doi.org/10.1016/j.cger.2011.07.001

[
Pubmed]   


6.Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 2007; 87:1175-213.

http://dx.doi.org/10.1152/physrev.00047.2006

[
Pubmed]   


7.Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann NY Acad Sci 2006; 1067:10-21.

http://dx.doi.org/10.1196/annals.1354.003

[
Pubmed]   


8.Sies H. Biochemistry of oxidative stress. Angew Chem Int Ed Eng 1986; 25: 1058-71.

http://dx.doi.org/10.1002/anie.198610581


9.Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic Biol Med 2012; 52:539-55.

http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.445

[
Pubmed]    [PMC Free Fulltext]   


10.Sohal RS, Weindruch R. Oxidative stress, caloric restriction, aging. Science 1996; 273:59-63.

http://dx.doi.org/10.1126/science.273.5271.59

[
Pubmed]   


11.Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Aging Dev 2004; 125:811-26.

http://dx.doi.org/10.1016/j.mad.2004.07.009

[
Pubmed]   


12.Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1244-9.

http://dx.doi.org/10.1152/ajpregu.00226.2004

[
Pubmed]   


13.Pan MH, Lai CS, Tsai ML, Wu JC, Ho CT. Molecular mechanisms for anti-aging by natural dietary compounds. Mol Nutr Food Res 2012; 56:88-115.

http://dx.doi.org/10.1002/mnfr.201100509

[
Pubmed]   


14.Liu GS, Zhang ZS, Yang B, He W. Resveratrol attenuates oxidative damage and ameliorates cognitive impairment in the brain of senescence-accelerated mice. Life Sci 2012; 91:872-7.

http://dx.doi.org/10.1016/j.lfs.2012.08.033

[
Pubmed]   


15.Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-aging and rejuvenating effects of quercetin. Exp Gerontol 2010; 45:763-71.

http://dx.doi.org/10.1016/j.exger.2010.07.001

[
Pubmed]   


16.Rho KA, Kim MK. Effects of different grape formulations on antioxidative capacity, lipid peroxidation and oxidative DNA damage in aged rats. J Nutr Sci Vitaminol (Tokyo). 2006; 52:33-46.

http://dx.doi.org/10.3177/jnsv.52.33

[
Pubmed]   


17.Gibson JE, Taylor DA. Can claims, misleading information and manufacturing issues regulating dietary supplements be improved in the United States of America? J Pharmacol Exp Ther 2005; 314:939-44.

http://dx.doi.org/10.1124/jpet.105.085712

[
Pubmed]   


18.Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O'Neal JM, Cornwell T, Pastor I, Fridlender B. Plants and human health in the twenty-first century. Trends Biotechnol 2002; 20:522-31.

http://dx.doi.org/10.1016/S0167-7799(02)02080-2

[
Pubmed]   


19.Masoro EJ. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 2007; 35:1-17.

[
Pubmed]   


20.Gredilla R, Sanz A, Lopez-Torres M, Barja G. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 2001; 15:1589-91.

http://dx.doi.org/10.1096/fj.00-0764fje

[
Pubmed]   


21.Zheng J, Mutcherson R, Helfand SL. Calorie restriction delays lipid oxidative damage in Drosophila melanogaster. Aging Cell 2005; 4:209-16.

http://dx.doi.org/10.1111/j.1474-9726.2005.00159.x

[
Pubmed]   


22.Padalko VI, Leonova IS, Kozlova EV. Caloric restricted diet effect on longevity and some indicators of biological age of Drosophila melanogaster. Problemi Stareniya I Dolgoletiya 2009; 18:64-71.


23.Brown GC, Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 2012; 12:1-4.

http://dx.doi.org/10.1016/j.mito.2011.02.001

[
Pubmed]   


24.Loschen G, Flohe L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 1971; 18:261-4.

http://dx.doi.org/10.1016/0014-5793(71)80459-3

[
Pubmed]   


25.Grivennikova VG, Kareyeva AV, Vinogradov AD. What are the sources of hydrogen peroxide production by heart mitochondria? Biochim Biophys Acta 2010; 1797:939-44.

http://dx.doi.org/10.1016/j.bbabio.2010.02.013

[
Pubmed]    [PMC Free Fulltext]   


26.Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010; 45:466-72.

http://dx.doi.org/10.1016/j.exger.2010.01.003

[
Pubmed]    [PMC Free Fulltext]   


27.Grivennikova VG, Vinogradov AD. Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim Biophys Acta 2013; 1827:446-54.

http://dx.doi.org/10.1016/j.bbabio.2013.01.002

[
Pubmed]   


28.Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow aging. Biotechnol Adv 2013; 31:563-92.

http://dx.doi.org/10.1016/j.biotechadv.2012.09.005

[
Pubmed]   


29.Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37:755-67.

http://dx.doi.org/10.1016/j.freeradbiomed.2004.05.034

[
Pubmed]   


30.Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta 2006; 1757:553-61.

http://dx.doi.org/10.1016/j.bbabio.2006.03.013

[
Pubmed]   


31.Echtay KS. Mitochondrial uncoupling proteins--What is their physiological role? Free Radic Biol Med 2007; 43:1351-71.

http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.011

[
Pubmed]   


32.Vinogradov AD, Grivennikova VG. Generation of superoxide radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Biochemistry (Mosc) 2005; 70:120-7.

http://dx.doi.org/10.1007/s10541-005-0090-7

[
Pubmed]   


33.Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med 2009; 47:333-43.

http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004

[
Pubmed]   


34.de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 2010; 51:391-405.

http://dx.doi.org/10.1002/em.20575

[
Pubmed]   


35.Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 2007; 6:607-18.

http://dx.doi.org/10.1111/j.1474-9726.2007.00312.x

[
Pubmed]   


36.Stefanatos R, Sanz A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle 2011; 10:1528-32.

http://dx.doi.org/10.4161/cc.10.10.15496

[
Pubmed]   


37.Armeni T, Principato G, Quiles JL, Pieri C, Bompadre S, Battino M. Mitochondrial dysfunctions during aging: vitamin E deficiency or caloric restriction–two different ways of modulating stress. J Bioenerg Biomembr 2003; 35:181-91.

http://dx.doi.org/10.1023/A:1023754305218

[
Pubmed]   


38.Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 2003; 284:R474-80.

http://dx.doi.org/10.1152/ajpregu.00455.2002

[
Pubmed]   


39.Barja G. Free radicals and aging. Trends Neurosci 2004; 27:595-600.

http://dx.doi.org/10.1016/j.tins.2004.07.005

[
Pubmed]   


40.Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 2006; 757:496-508.

http://dx.doi.org/10.1016/j.bbabio.2006.01.009

[
Pubmed]   


41.Sanz A, Fernandez-Ayala DJM, Stefanatos RKA, Jacobs HT. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2010; 2:200-23.

[
Pubmed]    [PMC Free Fulltext]   


42.Nohl H, Gille L, Staniek K. Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 2005; 69:719-23.

http://dx.doi.org/10.1016/j.bcp.2004.12.002

[
Pubmed]   


43.Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 2008; 1:10-21.

http://dx.doi.org/10.2174/1874609810801010010

[
Pubmed]   


44.Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD. Mitochondrial uncoupling and lifespan. Mech Aging Dev 2010; 131:463-72.

http://dx.doi.org/10.1016/j.mad.2010.03.010

[
Pubmed]    [PMC Free Fulltext]   


45.Jang YC, Perez VI, Song W, Lustgarten MS, Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A, Ikeno Y, Epstein CJ, Van Remmen H, Richardson A. Overexpression of Mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci 2009; 64:1114–25.

http://dx.doi.org/10.1093/gerona/glp100

[
Pubmed]    [PMC Free Fulltext]   


46.Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A. Is the oxidative stress theory of aging dead? Biochim Biophys Acta 2009; 1790:1005-14.

http://dx.doi.org/10.1016/j.bbagen.2009.06.003

[
Pubmed]   


47.Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 1969; 222:1076-8.

http://dx.doi.org/10.1038/2221076a0

[
Pubmed]   


48.Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP. Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 2011; 12:800-26.

http://dx.doi.org/10.2174/138945011795528859

[
Pubmed]   


49.Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007; 47:629-56.

http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105110

[
Pubmed]   


50.Smith RA, Porteous CM, Gane AM, Murphy MP. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 2003; 100:5407-12.

http://dx.doi.org/10.1073/pnas.0931245100

[
Pubmed]    [PMC Free Fulltext]   


51.Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 2007; 9:1825-36.

http://dx.doi.org/10.1089/ars.2007.1693

[
Pubmed]   


52.Magwere T, West M, Riyahi K, Murphy MP, Smith RA, Partridge L. The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Mech Aging Dev 2006; 127:356-70.

http://dx.doi.org/10.1016/j.mad.2005.12.009

[
Pubmed]   


53.Anisimov VN, Bakeeva LE, Egormin PA, Filenko OF, Isakova EF, Manskikh VN, Mikhelson VM, Panteleeva AA, Pasyukova EG, Pilipenko DI, Piskunova TS, Popovich IG, Roshchina NV, Rybina OY, Saprunova VB, Samoylova TA, Semenchenko AV, Skulachev MV, Spivak IM, Tsybul'ko EA, Tyndyk ML, Vyssokikh MY, Yurova MN, Zabezhinsky MA, Skulachev VP. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence. Biochemistry (Mosc) 2008; 73:1329-42.

http://dx.doi.org/10.1134/S0006297908120055

[
Pubmed]   


54.Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 2009; 1787:437-61.

http://dx.doi.org/10.1016/j.bbabio.2008.12.008

[
Pubmed]   


55.Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, Vyssokikh MY, Pustovidko AV, Markova OV, Yaguzhinsky LS, Korshunova GA, Sumbatyan NV, Skulachev MV, Skulachev VP. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Nat Acad Sci USA 2010; 107:663-8.

http://dx.doi.org/10.1073/pnas.0910216107

[
Pubmed]    [PMC Free Fulltext]   


56.Skulachev VP. New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry (Mosc) 2009; 74:1400-3.

http://dx.doi.org/10.1134/S0006297909120165

[
Pubmed]   


57.Tsybul'ko EA, Roshina NV, Rybina OY, Pasyukova EG. Mitochondria-targeted plastoquinone derivative SkQ1 increases early reproduction of Drosophila melanogaster at the cost of early survival. Biochemistry (Mosc) 2010; 75:265-8.

http://dx.doi.org/10.1134/S0006297910030016

[
Pubmed]   


58.Krementsova AV, Roshina NV, Tsybul'ko EA, Rybina OY, Symonenko AV, Pasyukova EG. Reproducible effects of the mitochondria-targeted plastoquinone derivative SkQ1 on Drosophila melanogaster lifespan under different experimental scenarios. Biogerontology 2012; 13:595-607.

http://dx.doi.org/10.1007/s10522-012-9404-5

[
Pubmed]   


59.Anisimov VN, Egorov MV, Krasilshchikova MS, Lyamzaev KG, Manskikh VN, Moshkin MP, Novikov EA, Popovich IG, Rogovin KA, Shabalina IG, Shekarova ON, Skulachev MV, Titova TV, Vygodin VA, Vyssokikh MY, Yurova MN, Zabezhinsky MA, Skulachev VP. Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging (Albany NY) 2011; 3:1110-9.

[
Pubmed]   


60.Neroev VV, Archipova MM, Bakeeva LE, Fursova AZh, Grigorian EN, Grishanova AY, Iomdina EN, Ivashchenko ZhN, Katargina LA, Khoroshilova-Maslova IP, Kilina OV, Kolosova NG, Kopenkin EP, Korshunov SS, Kovaleva NA, Novikova YP, Philippov PP, Pilipenko DI, Robustova OV, Saprunova VB, Senin II, Skulachev MV, Sotnikova LF, Stefanova NA, Tikhomirova NK, Tsapenko IV, Shchipanova AI, Zinovkin RA, Skulachev VP. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochemistry (Mosc) 2008; 73:1317-28.

http://dx.doi.org/10.1134/S0006297908120043

[
Pubmed]   


61.Kolosova NG, Stefanova NA, Muraleva NA, Skulachev VP. The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats. Aging (Albany NY) 2012; 4:686-94.

[
Pubmed]    [PMC Free Fulltext]   


62.Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med 1999; 20:139-84.

http://dx.doi.org/10.1016/S0098-2997(99)00008-4

[
Pubmed]   


63.Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29:169-202.

http://dx.doi.org/10.1017/S0033583500005795

[
Pubmed]   


64.Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416:15-8.

http://dx.doi.org/10.1016/S0014-5793(97)01159-9

[
Pubmed]   


65.Lambert AJ, Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J 2004; 382:511-7.

http://dx.doi.org/10.1042/BJ20040485

[
Pubmed]    [PMC Free Fulltext]   


66.Cunha FM, Caldeira da Silva CC, Cerqueira FM, Kowaltowski AJ. Mild mitochondrial uncoupling as a therapeutic strategy. Curr Drug Targets 2011; 12:783-9.

http://dx.doi.org/10.2174/138945011795528778

[
Pubmed]   


67.Papa S, Skulachev VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 1997; 174:305-19.

http://dx.doi.org/10.1023/A:1006873518427

[
Pubmed]   


68.Skulachev VP. Mitochondria, reactive oxygen species and longevity: some lessons from the Barja group. Aging Cell 2004; 3:17-9.

http://dx.doi.org/10.1111/j.1474-9728.2003.00076.x

[
Pubmed]   


69.Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, Brand MD. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 2004; 3:87-95.

http://dx.doi.org/10.1111/j.1474-9728.2004.00097.x

[
Pubmed]   


70.Amara CE, Shankland EG, Jubrias SA, Marcinek DJ, Kushmerick MJ, Conley KE. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci USA 2007; 104:1057-62.

http://dx.doi.org/10.1073/pnas.0610131104

[
Pubmed]    [PMC Free Fulltext]   


71.Lemire BD, Behrendt M, DeCorby A, Gaskova D. C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech Aging Dev 2009; 130:461-5.

http://dx.doi.org/10.1016/j.mad.2009.05.001

[
Pubmed]   


72.Dikov D, Aulbach A, Muster B, Drose S, Jendrach M, Bereiter-Hahn J. Do UCP2 and mild uncoupling improve longevity? Exp Gerontol 2010; 45:586-95.

http://dx.doi.org/10.1016/j.exger.2010.03.011

[
Pubmed]   


73.Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG. 'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem 2007; 101:1619-31.

http://dx.doi.org/10.1111/j.1471-4159.2007.04516.x

[
Pubmed]   


74.Shabalina IG, Nedergaard J. Mitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not? Biochem Soc Trans 2011; 39:1305-9.

http://dx.doi.org/10.1042/BST0391305

[
Pubmed]   


75.Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in aging. Exp Gerontol 2000; 35:811-20.

http://dx.doi.org/10.1016/S0531-5565(00)00135-2

[
Pubmed]   


76.Nedergaard J, Ricquier D, Kozak LP. Uncoupling proteins: current status and therapeutic prospects. EMBO Rep 2005; 6:917-21.

http://dx.doi.org/10.1038/sj.embor.7400532

[
Pubmed]    [PMC Free Fulltext]   


77.Nicholls DG. A history of UCP1. Biochem Soc Trans 2001; 29:751-5.

http://dx.doi.org/10.1042/BST0290751

[
Pubmed]   


78.Ricquier D. To burn or to store. Ann Endocrinol (Paris) 2002; 63:S7-14.

[
Pubmed]   


79.Mailloux RJ, Harper ME. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011; 51:1106-15.

http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.022

[
Pubmed]   


80.Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 2003; 22:4103-10.

http://dx.doi.org/10.1093/emboj/cdg412

[
Pubmed]    [PMC Free Fulltext]   


81.Mailloux RJ, Xuan JY, Beauchamp B, Jui L, Lou M, Harper ME. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J Biol Chem 2013; 288:8365-79.

http://dx.doi.org/10.1074/jbc.M112.442905

[
Pubmed]   


82.Fridell YW, Sanchez-Blanco A, Silvia BA, Helfand SL. Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab 2005; 1:145-52.

http://dx.doi.org/10.1016/j.cmet.2005.01.005

[
Pubmed]   


83.Kontani Y, Wang Y, Kimura K, Inokuma KI, Saito M, Suzuki-Miura T, Wang Z, Sato Y, Mori N, Yamashita H. UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell 2005; 4:147-55.

http://dx.doi.org/10.1111/j.1474-9726.2005.00157.x

[
Pubmed]   


84.McDonald RB, Walker KM, Warman DB, Griffey SM, Warden CH, Ramsey JJ, Horwitz BA. Characterization of survival and phenotype throughout the life span in UCP2/UCP3 genetically altered mice. Exp Gerontol 2008; 43:1061-8.

http://dx.doi.org/10.1016/j.exger.2008.09.011

[
Pubmed]   


85.Gates AC, Bernal-Mizrachi C, Chinault SL, Feng C, Schneider JG, Coleman T, Malone JP, Townsend RR, Chakravarthy MV, Semenkovich CF. Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab 2007; 6:497-505.

http://dx.doi.org/10.1016/j.cmet.2007.10.010

[
Pubmed]   


86.Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 2008; 7:552-560.

http://dx.doi.org/10.1111/j.1474-9726.2008.00407.x

[
Pubmed]   


87.Padalko VI. Uncoupler of oxidative phosphorylation prolongs the lifespan of Drosophila. Biochemistry (Mosc) 2005; 70:986-9.

http://dx.doi.org/10.1007/s10541-005-0213-1

[
Pubmed]   


88.Miquel J, Fleming J, Economos AC. Antioxidants, metabolic rate and aging in Drosophila. Arch Gerontol Geriatr 1982; 1:159-65.

http://dx.doi.org/10.1016/0167-4943(82)90016-4

[
Pubmed]   


89.Padalko VI, Leonova IS, Kozlova EV. The protein oxidative damage level and lifespan modulation by xenobiotics in Drosophila melanogaster. Adv Gerontol 2008; 21:212-7.

[
Pubmed]   


90.Barros MH, Bandy B, Tahara EB, Kowaltowski AJ. Higher respiratory activity decreases mitochondrial reactive oxygen release and increase life span in Saccharomyces cerevisiae. J Biol Chem 2004; 279:49883-8.

http://dx.doi.org/10.1074/jbc.M408918200

[
Pubmed]   


91.Stockl P, Zankl C, Hutter E, Unterluggauer H, Laun P, Heeren G, Bogengruber E, Herndler-Brandstetter D, Breitenbach M, Jansen-Durr P. Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells. Free Radic Biol Med 2007; 43:947-58.

http://dx.doi.org/10.1016/j.freeradbiomed.2007.06.005

[
Pubmed]   


92.Cerqueira FM, Laurindo FR, Kowaltowski AJ. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, Akt and mitochondrial biogenesis. PLoS One 2011; 6:e18433.

http://dx.doi.org/10.1371/journal.pone.0018433

[
Pubmed]    [PMC Free Fulltext]   


93.Padalko VI, Leonova IS, Kozlova EV. The effect of 2,4-dinitrophenol on the intensity of oxidative processes in the rat liver during prolonged experiment. Adv Gerontol 2010; 23:98-103.

[
Pubmed]   


94.Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 2007; 5:e110.

http://dx.doi.org/10.1371/journal.pbio.0050110

[
Pubmed]    [PMC Free Fulltext]   


95.Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol 2011; 7:205-12.

http://dx.doi.org/10.1007/s13181-011-0162-6

[
Pubmed]    [PMC Free Fulltext]   


96.Kurt TL, Anderson R, Petty C, Bost R, Reed G, Holland J. Dinitrophenol in weight loss: the poison center and public health safety. Vet Hum Toxicol 1986; 28:574-5.

[
Pubmed]   


97.Miranda EJ, McIntyre IM, Parker DR, Gary RD, Logan BK. Two deaths attributed to the use of 2,4-dinitrophenol. J Anal Toxicol 2006; 30:219-22.

http://dx.doi.org/10.1093/jat/30.3.219

[
Pubmed]   


98.Bartlett J, Brunner M, Gough K. Deliberate poisoning with dinitrophenol (DNP): an unlicensed weight loss pill. Emerg Med J 2010; 27:159-60.

http://dx.doi.org/10.1136/emj.2008.069401

[
Pubmed]   


99.Jiukun J, Zhihua Y, Weidong H, Jiezan W. 2,4-dinitrophenol poisoning caused by non-oral exposure. Toxicol Ind Health 2011; 27:323-7.

http://dx.doi.org/10.1177/0748233710387004

[
Pubmed]   


100.De Felice FG, Ferreira ST. Novel neuroprotective, neuritogenic and anti-amyloidogenic properties of 2,4-dinitrophenol: the gentle face of Janus. IUBMB Life 2006; 58:185-91.

http://dx.doi.org/10.1080/15216540600702198

[
Pubmed]   


101.Jin Y, McEwen ML, Nottingham SA, Maragos WF, Dragicevic NB, Sullivan PG, Springer JE. The mitochondrial uncoupling agent 2,4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord. J Neurotrauma 2004; 21:1396-404.

http://dx.doi.org/10.1089/neu.2004.21.1396

[
Pubmed]   


102.Petrenko AY, Cherkashina DV, Somov AY, Tkacheva EN, Semenchenko OA, Lebedinsky AS, Fuller BJ. Reversible mitochondrial uncoupling in the cold phase during liver preservation/reperfusion reduces oxidative injury in the rat model. Cryobiology 2010; 60:293-300.

http://dx.doi.org/10.1016/j.cryobiol.2010.02.001

[
Pubmed]   


103.Dong Q, Tollner TL, Rodenburg SE, Hill DL, VandeVoort CA. Antioxidants, Oxyrase, and mitochondrial uncoupler 2,4-dinitrophenol improved postthaw survival of rhesus monkey sperm from ejaculates with low cryosurvival. Fertil Steril 2010; 94:2359-61.

http://dx.doi.org/10.1016/j.fertnstert.2010.04.017

[
Pubmed]   


How to Cite this Article
Pubmed Style

Vladimir Illich Padalko. Mild mitochondrial uncoupling as potentially effective intervention to slow aging. Oxid Antioxid Med Sci. 2014; 3(1): 27-42. doi:10.5455/oams.161213.rv.012


Web Style

Vladimir Illich Padalko. Mild mitochondrial uncoupling as potentially effective intervention to slow aging. http://www.oamsjournal.com/?mno=47501 [Access: January 21, 2018]. doi:10.5455/oams.161213.rv.012


AMA (American Medical Association) Style

Vladimir Illich Padalko. Mild mitochondrial uncoupling as potentially effective intervention to slow aging. Oxid Antioxid Med Sci. 2014; 3(1): 27-42. doi:10.5455/oams.161213.rv.012



Vancouver/ICMJE Style

Vladimir Illich Padalko. Mild mitochondrial uncoupling as potentially effective intervention to slow aging. Oxid Antioxid Med Sci. (2014), [cited January 21, 2018]; 3(1): 27-42. doi:10.5455/oams.161213.rv.012



Harvard Style

Vladimir Illich Padalko (2014) Mild mitochondrial uncoupling as potentially effective intervention to slow aging. Oxid Antioxid Med Sci, 3 (1), 27-42. doi:10.5455/oams.161213.rv.012



Turabian Style

Vladimir Illich Padalko. 2014. Mild mitochondrial uncoupling as potentially effective intervention to slow aging. Oxidants and Antioxidants in Medical Science, 3 (1), 27-42. doi:10.5455/oams.161213.rv.012



Chicago Style

Vladimir Illich Padalko. "Mild mitochondrial uncoupling as potentially effective intervention to slow aging." Oxidants and Antioxidants in Medical Science 3 (2014), 27-42. doi:10.5455/oams.161213.rv.012



MLA (The Modern Language Association) Style

Vladimir Illich Padalko. "Mild mitochondrial uncoupling as potentially effective intervention to slow aging." Oxidants and Antioxidants in Medical Science 3.1 (2014), 27-42. Print. doi:10.5455/oams.161213.rv.012



APA (American Psychological Association) Style

Vladimir Illich Padalko (2014) Mild mitochondrial uncoupling as potentially effective intervention to slow aging. Oxidants and Antioxidants in Medical Science, 3 (1), 27-42. doi:10.5455/oams.161213.rv.012





Most Viewed Articles
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Effects of silymarin, N-acetylcysteine and selenium in the treatment of papulopustular acne
    Haidar Hamid Al-Anbari, Ahmed Salih Sahib, Ahmed R. Abu Raghif
    Oxid Antioxid Med Sci. 2012; 1(3): 201-207
    » Abstract & References » doi: 10.5455/oams.290912.or.019

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043

  • Most Downloaded
  • Low intensity radiofrequency radiation: a new oxidant for living cells
    Igor Yakymenko, Evgeniy Sidorik, Diane Henshel, Sergiy Kyrylenko
    Oxid Antioxid Med Sci. 2014; 3(1): 1-3
    » Abstract & References » doi: 10.5455/oams.240314.ed.002

  • Oxidants and antioxidants: friends or foes?
    Sukru Oter, Si Jin, Luca Cucullo, H.J. Damien Dorman
    Oxid Antioxid Med Sci. 2012; 1(1): 1-4
    » Abstract & References » doi: 10.5455/oams.080612.ed.001

  • The antioxidant capacity and immunomodulatory activity of stingless bee honeys proceeding from Costa Rica
    Gabriel Zamora, Kees Beukelman, Bert van den Berg, Maria Laura Arias, Eduardo Umana, Ingrid Aguilar, Linda Quarles van Ufford, Edwin van den Worm, Natalia Fallas, Rebeca Solorzano
    Oxid Antioxid Med Sci. 2015; 4(1): 49-55
    » Abstract & References » doi: 10.5455/oams.180415.or.084

  • Is it oxidative or free radical stress and why does it matter?
    Boguslaw Lipinski
    Oxid Antioxid Med Sci. 2012; 1(1): 5-9
    » Abstract & References » doi: 10.5455/oams.130312.rv.001

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038

  • Effects of free radicals and antioxidants on exercise performance
    Sikiru Lamina, Charles I. Ezema, Anele I. Theresa, Ezugwu U. Anthonia
    Oxid Antioxid Med Sci. 2013; 2(2): 83-91
    » Abstract & References » doi: 10.5455/oams.010413.rv.005

  • Protective properties of complex of quercetin, selenium, catechins and curcumin against DNA damage
    Jana Kadrabova, Marica Krajcovicova-Kudlackova, Alexander Madaric, Martina Valachovicova, Csilla Mislanova, Maria Korenovska
    Oxid Antioxid Med Sci. 2012; 1(3): 179-184
    » Abstract & References » doi: 10.5455/oams.180912.or.018

  • Airway antioxidant capacity and pH in chronic obstructive pulmonary disease
    Wei Lee, Hsien Loo, Paul S. Thomas
    Oxid Antioxid Med Sci. 2012; 1(3): 153-160
    » Abstract & References » doi: 10.5455/oams.300812.or.016

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001

  • Most Cited Articles
  • Chemical properties of Monodora myristica and its protective potentials against free radicals in vitro
    Ochuko L. Erukainure, Oluwatoyin V. Oke, Folashade O. Owolabi, Funmi O. Kayode, Emmanuel E. Umanhonlen, Muhammad Aliyu
    Oxid Antioxid Med Sci. 2012; 1(2): 127-132
    » Abstract & References » doi: 10.5455/oams.080712.or.009
    Cited : 11 times [Click to see citing articles]

  • Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines
    Wahyu Widowati, Tjandrawati Mozef, Chandra Risdian, Yellianty Yellianty
    Oxid Antioxid Med Sci. 2013; 2(2): 137-142
    » Abstract & References » doi: 10.5455/oams.100413.or.038
    Cited : 10 times [Click to see citing articles]

  • Silymarin and naringenin protects nicotine induced oxidative stress in young rats
    Anshu Jain, Nidhi Dwivedi, Rakesh Bhargava, Swaran J.S. Flora
    Oxid Antioxid Med Sci. 2012; 1(1): 41-49
    » Abstract & References » doi: 10.5455/oams.130412.or.004
    Cited : 9 times [Click to see citing articles]

  • Role of free radicals and antioxidants in gynecological cancers: current status and future prospects
    Lokanatha Valluru, Subramanyam Dasari, Rajendra Wudayagiri
    Oxid Antioxid Med Sci. 2014; 3(1): 15-26
    » Abstract & References » doi: 10.5455/oams.201113.rv.011
    Cited : 9 times [Click to see citing articles]

  • Palm vitamin E reduces oxidative stress, and physical and morphological alterations of erythrocyte membranes in streptozotocin-induced diabetic rats
    Fatmah Ali Matough, Siti Balkis Budin, Zariyantey Abdul Hamid, Santhana Raj Louis, Nasar Alwahaibi, Jamaludin Mohamed
    Oxid Antioxid Med Sci. 2012; 1(1): 59-68
    » Abstract & References » doi: 10.5455/oams.300412.or.006
    Cited : 8 times [Click to see citing articles]

  • Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana
    Rabiat U. Hamzah, Evans C. Egwim, Adamu Y. Kabiru, Mary B. Muazu
    Oxid Antioxid Med Sci. 2013; 2(3): 217-223
    » Abstract & References » doi: 10.5455/oams.090513.or.043
    Cited : 8 times [Click to see citing articles]

  • Peroxidative index as novel marker of hydrogen peroxide involvement in lipid peroxidation from coal dust exposure
    Nia Kania, Bambang Setiawan, Edi Widjajanto, Nurdiana Nurdiana, M. Aris Widodo, H.M.S. Chandra Kusuma
    Oxid Antioxid Med Sci. 2012; 1(3): 209-215
    » Abstract & References » doi: 10.5455/oams.031012.or.020
    Cited : 7 times [Click to see citing articles]

  • Heparin or EDTA; anticoagulant of choice in free radical estimation?
    Kuldeep Mohanty, Swetasmita Mishra, Jhumur Pani, Tarannum Hasan, Abhishek Purohit, Subhadra Sharma, Rima Dada
    Oxid Antioxid Med Sci. 2012; 1(1): 21-24
    » Abstract & References » doi: 10.5455/oams.130512.br.001
    Cited : 6 times [Click to see citing articles]

  • Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7
    Mohankumar Thenmozhi, Krishnan Kannabiran
    Oxid Antioxid Med Sci. 2012; 1(1): 51-57
    » Abstract & References » doi: 10.5455/oams.270412.or.005
    Cited : 6 times [Click to see citing articles]

  • Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells
    Alyssa G. Schuck, Jeffrey H. Weisburg, Hannah Esan, Esther F. Robin, Ayelet R. Bersson, Jordana R. Weitschner, Tova Lahasky, Harriet L. Zuckerbraun, Harvey Babich
    Oxid Antioxid Med Sci. 2013; 2(4): 265-274
    » Abstract & References » doi: 10.5455/oams.220713.or.051
    Cited : 6 times [Click to see citing articles]